Index
QuantumStateBase.ComplexVec
QuantumStateBase.WignerFunction
QuantumStateBase.Annihilation
QuantumStateBase.CoherentState
QuantumStateBase.Creation
QuantumStateBase.Displacement
QuantumStateBase.FockState
QuantumStateBase.SinglePhotonState
QuantumStateBase.SqueezedState
QuantumStateBase.SqueezedThermalState
QuantumStateBase.Squeezing
QuantumStateBase.ThermalState
QuantumStateBase.VacuumState
QuantumStateBase.annihilate
QuantumStateBase.create
QuantumStateBase.displace
QuantumStateBase.laguerre
QuantumStateBase.laguerre
QuantumStateBase.squeeze
QuantumStateBase.wigner
QuantumStateBase.z
APIs
QuantumStateBase.ComplexVec
— MethodQuantumStateBase.ComplexVec(r::T, θ::T)
Construct a vector in polar coordinate for complex plane.
$v = re^{-i\theta}$
Arguments
r
: Radius of the complex number.θ
: Argument of the complex number.
QuantumStateBase.WignerFunction
— TypeWignerFunction
WignerFunction
to calculate Wigner function for a quantum state in gevin x
and p
range.
Arguments
x_range
: First physical domain range in phase space.p_range
: Second physical domain range in phase space.dim
: Photon number truncation of the quantum state.
Example
julia> xs = -1:0.1:1; ps = -1:0.1:1; dim=35;
julia> wf = WignerFunction(xs, ps, dim=dim);
julia> wf(VacuumState(Matrix, dim=dim));
QuantumStateBase.Annihilation
— MethodQuantumStateBase.Annihilation(T; dim::Integer)
Construct an annihilation operator in matrix form.
$\hat{a}$
QuantumStateBase.CoherentState
— MethodCoherentState([T::Type{<:Complex}], r::Real, θ::Real, [rep::Type]; dim::Integer)
Construct a coherent state in rep
representation.
T
: Numerical type. Default asComplexF64
if not assigned.r
: The radius in phase space.θ
: The phase angle in phase space.rep
:In which representation, default asVector
if not assigned.dim
: Maximum photon number for truncate.
QuantumStateBase.Creation
— MethodQuantumStateBase.Creation(T; dim::Integer)
Construct a creation operator in matrix form.
$\hat{a}^{\dagger}$
QuantumStateBase.Displacement
— MethodQuantumStateBase.Displacement(T::Type{<:Complex}, r::Real, θ::Real; dim::Integer)
Construct a displacement operator in matrix form.
$\hat{D}(\alpha) = exp(\alpha \hat{a}^{\dagger} - \alpha^{*} \hat{a})$
QuantumStateBase.FockState
— MethodFockState([T::Type{<:Number}], n::Integer, [rep::Type]; dim::Integer)
Construct a Fock state in rep
representation.
Arguments
T
: Numerical type. Default asFloat64
if not assigned.n
: Photon number of Fock state.rep
: In which representation, default asVector
if not assigned.dim
: Maximum photon number for truncate.
QuantumStateBase.SinglePhotonState
— MethodSinglePhotonState([T::Type{<:Number}], [rep::Type]; dim::Integer)
Construct a single photon state in rep
representation.
Arguments
T
: Numerical type. Default asFloat64
if not assigned.rep
:In which representation, default asVector
if not assigned.dim
: Maximum photon number for truncate.
QuantumStateBase.SqueezedState
— MethodSqueezedState([T::Type{<:Complex}], r::Real, θ::Real, [rep::Type]; dim::Integer)
Construct a squeezed state in rep
representation.
Squeezed state is defined if its electric field strength for some phases has a quantum uncertainty smaller than that of a coherent state.
Arguments
T
: Numerical type. Default asComplexF64
if not assigned.r
: The squeezing level.θ
: The squeezing phase.rep
:In which representation, default asVector
if not assigned.dim
: Maximum photon number for truncate.
This constructor will construct $| \xi \rangle = \hat{S}(\xi) | 0 \rangle$
QuantumStateBase.SqueezedThermalState
— MethodSqueezedThermalState([T::Type{<:Complex}], r::Real, θ::Real, n̄::Real; dim::Integer)
Construct a squeezed thermal state.
Squeezed thermal state is defined if its electric field strength for some phases has a quantum uncertainty smaller than that of a coherent state.
Arguments
T
: Numeric type. Default asComplexF64
if not assigned.r
: Squeezing level.θ
: Squeezing phase.n̄
: Average photon number at a certain temperature.dim
: Maximum photon number for truncate.
This constructor will construct $\rho = \hat{S}(\xi) \rho_{th} \hat{S}(\xi)^{T}$
QuantumStateBase.Squeezing
— MethodQuantumStateBase.Squeezing(T::Type{<:Complex}, r::Real, θ::Real; dim::Integer)
Construct a squeezing operator in matrix form.
Arguments
r
: Squeezing level.θ
: Squeezing phase.
$\hat{S}(\xi) = exp(\frac{1}{2}(\xi^{*} \hat{a}^{2} - \xi \hat{a}^{\dagger 2}))$
QuantumStateBase.ThermalState
— MethodThermalState([T::Type{<:Number}], n̄::Real; dim::Integer)
Construct a thermal state.
Thermal state is a mixed state with photon number distribution described by Bose-Einstein distribution.
Arguments
T
: Numerical type. Default asFloat64
if not assigned.n̄
: Average photon number at a certain temperature.dim
: Maximum photon number for truncate.
QuantumStateBase.VacuumState
— MethodVacuumState([T::Type{<:Number}], [rep::Type]; dim::Integer)
Construct a vacuum state in rep
representation.
Arguments
T
: Numerical type. Default asFloat64
if not assigned.rep
:In which representation, default asVector
if not assigned.dim
: Maximum photon number for truncate.
QuantumStateBase.annihilate
— Methodannihilate(s::AbstractArray{T})
Apply annihilation operator on a quantum state.
Arguments
s
:s
can be a quantum state vector or a density matrix of a quantum state.
Examples
julia> state = SinglePhotonState(dim=5)
5-element Vector{Float64}:
0.0
1.0
0.0
0.0
0.0
julia> annihilate(state)
5-element Vector{Float64}:
1.0
0.0
0.0
0.0
0.0
julia> state = SinglePhotonState(Matrix, dim=5)
5×5 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
julia> annihilate(state)
5×5 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
QuantumStateBase.create
— Methodcreate(s::AbstractArray{T})
Apply creation operator on a quantum state.
Arguments
s
:s
can be a quantum state vector or a density matrix of a quantum state.
Examples
julia> state = VacuumState(dim=5)
5-element Vector{Float64}:
1.0
0.0
0.0
0.0
0.0
julia> create(state)
5-element Vector{Float64}:
0.0
1.0
0.0
0.0
0.0
julia> state = VacuumState(Matrix, dim=5)
5×5 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
julia> create(state)
5×5 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
QuantumStateBase.displace
— Methoddisplace(s::AbstractArray{T}, r, θ)
Apply displacement operator on a quantum state.
Arguments
s
:s
can be a quantum state vector or a density matrix of a quantum state.r
: Radius of displacement.θ
: Phase of displacement.
Examples
julia> state = VacuumState(dim=5)
5-element Vector{Float64}:
1.0
0.0
0.0
0.0
0.0
julia> displace(state, 2, π/4)
5-element Vector{ComplexF64}:
0.14864196494651452 - 5.551115123125783e-17im
0.15309939720606983 - 0.15309939720606955im
8.326672684688674e-17 - 0.5201876236174409im
-0.1359447277638306 - 0.13594472776383068im
-0.7896009204837534 - 3.0531133177191805e-16im
julia> state = VacuumState(Matrix, dim=5)
5×5 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
julia> displace(state, 2, π/4)
5×5 Matrix{ComplexF64}:
0.0220944+0.0im 0.022757+0.022757im 4.12531e-17+0.0773217im -0.0202071+0.0202071im -0.117368+8.92137e-17im
0.022757-0.022757im 0.0468789+0.0im 0.0796404+0.0796404im -2.42861e-17+0.0416261im -0.120887+0.120887im
4.12531e-17-0.0773217im 0.0796404-0.0796404im 0.270595+0.0im 0.0707168+0.0707168im 9.30717e-17+0.410741im
-0.0202071-0.0202071im -2.42861e-17-0.0416261im 0.0707168-0.0707168im 0.0369619+0.0im 0.107342+0.107342im
-0.117368-8.92137e-17im -0.120887-0.120887im 9.30717e-17-0.410741im 0.107342-0.107342im 0.62347+0.0im
QuantumStateBase.laguerre
— Methodlaguerre(n::Integer, α::Integer)(x::Real)
Generalized Laguerre polynomials
Examples
julia> L = laguerre(1, 3);
julia> L(5)
-1
QuantumStateBase.laguerre
— Methodlaguerre(n::Integer, α::Integer, x::Real)
Generalized Laguerre polynomials
Examples
julia> laguerre(0, 1, 5)
1
julia> laguerre(1, 3, 5)
-1
QuantumStateBase.squeeze
— Methodsqueeze(s::AbstractArray{T})
Apply squeezing operator on a quantum state.
Arguments
s
:s
can be a quantum state vector or a density matrix of a quantum state.r
: Squeezing level.θ
: Squeezing phase.
Examples
julia> state = VacuumState(dim=5)
5-element Vector{Float64}:
1.0
0.0
0.0
0.0
0.0
julia> squeeze(state, 0.5, π/4)
5-element Vector{ComplexF64}:
0.9419264274916698 + 0.0im
0.0 + 0.0im
-0.21510388914370943 + 0.21510388914370937im
0.0 + 0.0im
3.0228557826221164e-17 - 0.1422506201859301im
julia> state = VacuumState(Matrix, dim=5)
5×5 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
julia> squeeze(state, 0.5, π/4)
5×5 Matrix{ComplexF64}:
0.887225+0.0im 0.0+0.0im -0.202612-0.202612im 0.0+0.0im 2.84731e-17+0.13399im
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
-0.202612+0.202612im 0.0+0.0im 0.0925394+0.0im 0.0+0.0im -0.0305987-0.0305987im
0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
2.84731e-17-0.13399im 0.0+0.0im -0.0305987+0.0305987im 0.0+0.0im 0.0202352+0.0im
QuantumStateBase.wigner
— Methodwigner(ρ::AbstractMatrix{T}, x_range::AbstractRange, p_range::AbstractRange)
Calculate the Wigner fuction of the quantum state in the gevin x
and p
range.
Arguments
ρ
: Density matrix of a quantum state.x_range
: First physical domain range in phase space.p_range
: Second physical domain range in phase space.
Example
julia> xs = -1:0.1:1; ps = -1:0.1:1;
julia> wigner(VacuumState(Matrix, dim=35), xs, ps);
QuantumStateBase.z
— MethodQuantumStateBase.z(complexvec::ComplexVec)
Evaluate the complex vector.